
2020-07-29

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL
hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Bitwise and bit-shift
operators

2
Bitwise and bit-shift operators

Outline

• In this presentation, we will:

– Introduce bitwise logical operations

– Contrast these with Boolean logical operations

– Describe

• The bitwise EXCLUSIVE OR operator

 in addition to bitwise AND and OR

• The unary bitwise NOT or complement operator

– Describe left and right shift operators

3
Bitwise and bit-shift operators

Logical operators

• We have seen two logical operators:

– The binary logical AND operator and the binary logical OR operator

– Their behavior is defined by the values of the operands:

– Recall that any zero value is false, while any non-zero value is true

• true and false have the values 1 and 0, respectively

x y x && y x || y

false false false false

false true false true

true true true true

true false false true

4
Bitwise and bit-shift operators

Primitive types

• Recall that primitive types are a fixed number of bits

– Given any two bits, we could define

b3 c3 b3 AND c3 b3 OR b3

0 0 0 0

0 1 0 1

1 1 1 1

1 0 0 1

2020-07-29

2

5
Bitwise and bit-shift operators

Bitwise AND operator

• There are three binary bitwise operators in C++

– Given any two operands of the same type, the bitwise AND operator &
compares the corresponding pairs of bits

– Each result is 1 only if both bits are also 1

 00100100101010010100101001010100

 & 01001010101011110100111101000001

 00000000101010010100101001000000

6
Bitwise and bit-shift operators

Bitwise AND operator

• Like arithmetic operations,

 the bitwise AND of any pair of bits does not affect the operands

#include <iostream>

int main();

int main() {

 unsigned int m{0b00100100101010010100101001010100};

 unsigned int n{0b01001010101011110100111101000001};

 std::cout << " m = " << m << std::endl;

 std::cout << " n = " << n << std::endl;

 std::cout << "m & n = " << (m & n) << std::endl;

 return 0;

}

Output:
 m = 615074388
 n = 1253003073
m & n = 11094592

0b00000000101010010100101001000000

7
Bitwise and bit-shift operators

Bitwise OR operator

• The second is bitwise OR operator |

– Given any two operands of the same type a logical OR to each
corresponding pair of bits

– Each result is 0 only if both bits are also 0

 00100100101010010100101001010100

 | 01001010101011110100111101000001

 01101110101011110100111101010101

8
Bitwise and bit-shift operators

Bitwise OR operator

• Like arithmetic operations,

 the bitwise OR of any pair of bits does not affect the operands

#include <iostream>

int main();

int main() {

 unsigned int m{0b00100100101010010100101001010100};

 unsigned int n{0b01001010101011110100111101000001};

 std::cout << " m = " << m << std::endl;

 std::cout << " n = " << n << std::endl;

 std::cout << "m | n = " << (m | n) << std::endl;

 return 0;

}

Output:
 m = 615074388
 n = 1253003073
m | n = 1856982869

0b01101110101011110100111101010101

2020-07-29

3

9
Bitwise and bit-shift operators

Bitwise EXCLUSIVE-OR operator

• The third is bitwise XOR operator

– This has no equivalent binary logical operator

– For this result to be true, one but not both operands must be true

b1 b2 b1 AND b2 b1 OR b2 b1 XOR b2

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

10
Bitwise and bit-shift operators

Bitwise XOR operator

• The third is bitwise XOR operator ^

– This has no equivalent binary logical operator

– If both bits have the same value, the result is 0, otherwise it is 1

 00100100101010010100101001010100

 ^ 01001010101011110100111101000001

 01101110000001100000010100010101

11
Bitwise and bit-shift operators

Bitwise XOR operator

• Like arithmetic operations,

 the bitwise XOR of any pair of bits does not affect the operands

#include <iostream>

int main();

int main() {

 unsigned int m{0b00100100101010010100101001010100};

 unsigned int n{0b01001010101011110100111101000001};

 std::cout << " m = " << m << std::endl;

 std::cout << " n = " << n << std::endl;

 std::cout << "m ^ n = " << (m ^ n) << std::endl;

 return 0;

}

Output:
 m = 615074388
 n = 1253003073
m ^ n = 1845888277

0b01101110000001100000010100010101

12
Bitwise and bit-shift operators

Automatic bitwise assignment

• For each binary bitwise operator, there is an automatic assignment
operator:

• Note: there are no Boolean automatic assignment operators

– The operators &&= and ||= do not exist in C++

 Assignment
Automatic

assignment
Name

 a = a & 32 a &= 32 auto bitwise AND

 b = b | 41 b |= 41 auto bitwise ORR

 c = 2 ^ c c ^= 2 auto bitwise XOR

2020-07-29

4

13
Bitwise and bit-shift operators

Unary bitwise NOT operator

• A unary bitwise operator is the NOT operator ~

– It is equivalent to applying the logical NOT operator ~ to each bit

 ~ 01001010101011110100111101000001

 10110101010100001011000010111110

14
Bitwise and bit-shift operators

Bitwise AND operator

• Like arithmetic operations,

 the bitwise AND of any pair of bits does not affect the operands

#include <iostream>

int main();

int main() {

 unsigned int m{0b00100100101010010100101001010100};

 std::cout << " m = " << m << std::endl;

 std::cout << "~m = " << (~m) << std::endl;

 return 0;

}

Output:
 m = 615074388
~m = 3679892907

0b11011011010101101011010110101011

15
Bitwise and bit-shift operators

Application of bitwise operators

• Bitwise operators allow the manipulation of individual bits

– Suppose this local variable has exactly one 1 bit

 unsigned int MASK{256}; // 0b00000000000000000000000100000000

– Suppose n is any unsigned integer value:

 unsigned int n{};

 std::cin >> n;

• We can set the 8th bit of n to 1:

 n |= MASK;

• We can set the 8th bit of n to 0:

 n &= ~MASK;

• We can flip the 8th bit of n between 0 and 1:

 n ^= MASK;

• We can have a condition that is true if the 8th bit is 1:

 if (n & MASK) {

 // Do something if the 8th bit is 1

 }

Bit 0

16
Bitwise and bit-shift operators

Application of bitwise operators

#include <iostream>

int main();

int main() {

 unsigned short MASK_0{1} // 0b0000000000000001

 unsigned short MASK_1{2} // 0b0000000000000010

 unsigned short MASK_2{4} // 0b0000000000000100

 unsigned short MASK_3{8} // 0b0000000000001000

 unsigned short n{};

 std::cout << "Enter a positive integer: ";

 std::cin >> n;

 n |= MASK_0; // Set bit 0 to 1

 n &= ~MASK_1; // Set bit 1 to 0

 n ^= MASK_2; // Flip the value of bit 2

 if (n & MASK_3) {

 std::cout << "Bit 3 is '1'" << std::endl;

 } else {

 std::cout << "Bit 3 is '0'" << std::endl;

 }

 return 0;

}

000···0001110

000···0001111 000···0001101 000···0001001

Bit 3 is '1'

2020-07-29

5

17
Bitwise and bit-shift operators

Bit-shift operators

• There are two operators that literally shift bits left or right:

– The left-shift operator << evaluates to

 the bits of the operand op shifted to the left by n bits

 unsigned int op{17};

 unsigned int q1{ op << n };

 // n is any non-negative integer

– The right-shift operator >> evaluates to

 the bits of the operand op shifted to the right by n bits

 unsigned int q2{ op >> n };

 // n is any non-negative integer

• Any bits shifted beyond the last position are lost

18
Bitwise and bit-shift operators

Bit-shift operators

• Examples:

– If op is four bytes and has the value

00100100111110010100111001010100

– The result of op >> 5 is

00000001001001111100101001110010

– The result of op >> 12 is

00000000000000100100111110010100

– The result of op << 8 is

11111001010011100101010000000000

– The result of op << 13 is

00101001110010101000000000000000

19
Bitwise and bit-shift operators

Automatic bit-shift assignment

• There are two automatic bit-shift operators

– Shift the bits in the operand op to the left by n bits

 op <<= n;

– Shift the bits in the operand op to the right by n bits

 op >>= n;

20
Bitwise and bit-shift operators

Application of bit-shift operators

• Bit-shift operators can be used to precisely read or place bits

– In our next example, we will use bit shifting and bitwise AND to print
a number to the screen in binary

2020-07-29

6

21
Bitwise and bit-shift operators

Application of bit-shift operators

#include <iostream>

int main();

int main() {

 unsigned int n;

 std::cout << "Enter a positive integer: ";

 std::cin >> n;

 for (unsigned int k{1 << 31}; k > 0; k >>= 1) {

 if (n & k) {

 std::cout << "1";

 } else {

 std::cout << "0";

 }

 }

 std::cout << std::endl;

 return 0;

}

10000000000000000000000000000000 01000000000000000000000000000000 00100000000000000000000000000000 00010000000000000000000000000000 00000000000000000000000000000001 00000000000000000000000000000000

00111011100110101100100111111111

22
Bitwise and bit-shift operators

Summary of operators

• To summarize our knowledge of operators

Operator Binary Unary

Arithmetic + - * / % + -

Comparison < <= == != >= >

Logical && || !

bitwise & | ^ ~

Bit shift << >>

Assignment =

Arithmetic auto-assignment += -= *= /= %= ++ --

Bitwise auto-assignment &= |= ^=

Bit-shift auto-assignment <<= >>=

23
Bitwise and bit-shift operators

Summary

• In this presentation, you now

– Are aware of bitwise and bit-shifting operators

– Understand the behavior of these operators

– Understand the automatic operators corresponding to these

• There are no &&= or ||= 0perators

24
Bitwise and bit-shift operators

References

[1] No references?

2020-07-29

7

25
Bitwise and bit-shift operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

26
Bitwise and bit-shift operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

